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Abstract: Coherent anti-Stokes Raman scattering (CARS) is a well-known
Raman scattering process that occurs when Stokes, anti-Stokes and pump
waves are properly phase-matched. Using a quantum-field approach with
Langevin noise sources, we calculate the noise figure for wavelength
conversion between the Stokes and anti-Stokes waves in CARS and show
its dependence on phase mismatch. Under phase matched conditions, the
minimum noise figure is approximately 3 dB, with a correction that depends
on the pump frequency, Stokes shift, refractive indices, and nonlinear
susceptibilities. We calculate the photon statistics of CARS and show that
the photon number distribution is non-Gaussian. Our findings may be
significant for currently pursued applications of CARS including
wavelength conversion in data transmission and spectroscopic detection of
dilute biochemical species.
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1. Introduction

Coherent anti-Stokes Raman scattering (CARS) is a nonlinear optical process in which energy
is parametrically transferred between phase-matched Stokes and anti-Stokes fields via
interaction with vibrational modes of the material in the presence of a strong pump wave.
Since its discovery by Maker and Terhune in the early days of nonlinear optical research [1],
it has found numerous applications in spectroscopy and substance identification [2,3] and
continues as an active field of applied research [4-9]. CARS was also recently demonstrated in
silicon and has been proposed as means of wavelength conversion between the
technologically important 1300 nm and the 1550 nm wavelength bands[10].

An important topic that has been discussed is the fundamental noise in the CARS process.
To our knowledge, the first investigation to address the issue of noise in CARS was conducted
by Perina et a [11-13] with more recent investigations due to Voss et a [14-15]. Scully et &l
[16] have also addressed this issue in the context of an ultra-fast spectroscopic technique they
proposed for detection of rarified bacterial spores [4]. In References [11-13], the photon
statistics were calculated for the CARS process, but the treatment is in the time-domain. The
treatment in [16] is also in the time-domain. Voss et al used spatial propagation equations for
the optical fields and calculated the noise figure for Raman amplification and CARS [14-15],
but did not calculate the photon statistics.

In this paper, we formulate the problem using spatial propagation equations and obtain
both the noise figure and, for the first time, the photon statistics using such an approach.
Although the time-domain approach is appropriate for cavity dynamics, this spatial treatment
is more suitable for treating waveguide propagation where the effects of waveguide and
material dispersion, as well as phase mismatch are explicitly included. We obtain the
propageation equations for Stokes and anti-Stokes fields in a different manner than that
employed in [14-15]. We demongtrate that the minimum noise figure obtained at perfect phase
matching is close to 3 dB, but deviates from this value by a factor that depends on the
contribution of both linear and nonlinear dispersion, as well as the Stokes shift and pump
frequency. There are two distinct contributions to the noise in the output signa: (1) noise
originating from the zero point fluctuations of the inputs and (2) noise originating from the
coupling of the Stokes and anti-Stokes fields with the damped material vibrations. We aso
calculate the full photon probability distribution at the output wavelength, and show that its
tails deviate significantly from those of the Gaussian distribution. These findings may be
important for determining the minimum bit error rate (BER) in CARS data transfer, as well as
the fundamental detection limit of CARS spectroscopy.

We start with the classical equations for CARS and convert them into propagation
equations for the quantum field operators for the Stokes and anti-Stokes modes. Using these
equations, we derive the noise sources for the Stokes and the anti-Stokes fields by imposing
the requirement that the commutators of their field operators must be conserved. Throughout
the paper we deal with an ideal medium that does not have optical losses or permit other
nonlinear optical processes. Optical losses (linear or nonlinear) can be easily included
numerically, but are not discussed here because they are not fundamental to the CARS
process.
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2. Equations of motion

The CARS process increases the noise in both the Stokes and anti-Stokes fields. These modes
are coupled together through interaction with the damped vibrational phonons of the material
and since CARS involves dissipative interactions, it must introduce noise into the optica

signals. The propagation of the Stokes and anti-Stokes field operators (denoted a5 and & g
respectively), including the effect of this excess noise (using the Langevin noise operators
N (x), N* (x) discussed below) are described by the following two eguations:

da . . o -

o = 9s8s + 105 &XP(j(ABX+20:))85s — jy29s N (1a)

dass 2 as . .
=—“ga,c —rgexXp(— (AL - 2
> Os8xs — 95 &XP(=J(AB - X+ 2¢,))ag ab)

+j exp(= ] (AB- x+20,)),/2r g N*.

These eguations are derived in Appendix A starting from the classical field-amplitude
equations of CARS, replacing the field amplitudes with quantum field operators, and invoking
the principle of “commutator conservation.” In the above equations the operators that appear

obey the following commutation relationships: [4.,45]=1, [A,s,85] =1, [85,8,5] =0
and, since the noise is uncorrelated at each spatia point, [N(x), N* (x)] = 8(x—x'). The
quantity A =2[, — B — Bas isthewavevector mismatch between the waves ( 3; isthe
propagation constant of the j-th wave, with j = P, Sor AS), gg is equal to one half of the
Raman (power) gain coefficient, @, is the phase of the pump wave and
P = OpsNs (I as/X$)"°
anAS

, where @g,w,; are Stokes and anti-Stokes freguencies,

Ng,N,s the indices of refraction and } o, ¥* 55 are the Raman susceptibilities. Since we

will be interested in a narrow frequency band around the center of the Raman resonance, Qg

and I arereal quantities.
The above equations (1a) and (1b) have the property that they conserve the commutators
of the Stokes and anti-Stokes fields along propagation in the x-direction, so that for example,

[A5(X), a5 (¥)] =[As(x'),as(x)]. Thisisachieved in the equations through the presence of

the terms involving the “Langevin noise source operators’ N(x), N* (x), which introduce

fluctuations in the Stokes and anti-Stokes fields, as described in more detail below.
The general solution to the above equationsis:

as(x) = A(X)a5(0) + B(x)a,s(0) +joxdx' N(X— XIN*(X) (2a)

a,s(X) = C(X)a,s(0) + D(X)a5(0) + joxdx' N o(X—=X') N* (x'). (2b)

The details to the above solution along with general expressionsfor the A, B, C and D
coefficients are presented in full in Appendix B.
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3. Wavelength conversion noisefigure

We can now calculate the fluctuations of the Stokes (anti-Stokes) field at the output x = L of
the wavelength converter, when there is anti-Stokes (Stokes) field present at the input x = 0.
Let us consider, for example, the case where there are no photons a the Stokes frequency and
the anti-Stokes wave at the input is a coherent state. The assumption of zero photons in the
Stokes input is a good one, since a room temperature the mean photon number of the thermal

optical radiation is practically zero. In our notation, | >S| >AS denotes the states of the

Stokes and anti-Stokes inputs, respectively.
At this point we need to discuss the concept of the noise reservoir “states.” At every point

X in the waveguide, the state of the reservoir is denoted by | >R . (the states on which the

operators N (X) and N* (X) act). To simplify the notation we will use the combined state

| >R = H| >Rx in the calculations. Since the noise reservoir creates fluctuations in the
X

vibrational mode with which the optical waves interact, the frequency of the reservoir is that
of the material vibrations. The noise sources originate from the fluctuations in the vibrational
modes being “upconverted” to the Stokes and anti-Stokes frequencies due to interaction with
the optical pump wave. To show this, one takes the noise reservoir to be a thermal density

matrix and calculates the mean Stokes photon number in the case A >> 05 (where Stokes

and anti-Stokes are uncoupled) when there is no input a x = 0. This gives the Stokes
spontaneous emission rate, which is proportional to the mean number of reservoir quanta plus
one. Since we know that the Stokes spontaneous emission rate is also proportiona to the mean
phonon number plus one, we can identify the reservoir frequency with the vibrational mode
freqguency. We will assume next that the noise reservoir is in the ground state

(KT <<t p).

We will calculate the noise figure first for the case of anti-Stokes to Stokes conversion
when the anti-Stokes input is a coherent state of amplitude a . This situation corresponds to

the state |0>S| a> AS| O> , and the mean input photon number in the anti-Stokes field is | & I
Referring to Egs. (2a) and (2b), we can express the mean photon rate at the Stokes output

as
(8 (08s(0) =B Flaf +1BOY I +Ngsor - )
Converted signal d.c. term

where Ng o7 = J: dX'| Ng (X)|2 . For the fluctuations in photon number we find:

(482085 00F ) 4 BRI (Nsror + 1 AT +1BO ) &

+| A I (1B I +Ngror)-
So far we have discussed single frequency signals; if the photons are sent in a pulse of spectra

width Af | then |a|*= R/ Af , where R is the input photon rate. The optical (signal-to-
noise ratio) SNR for an ideal photodetector is:
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ai(x)as(x
s | 09 S(A>>%N,;L)
(a(az (985 00f )
_ |B(X) [ R?
1B * (Nsror+ 1 AX) [* +1B(X) [))R-AF + [ AX) [* (| B(X) I +Ng 107 )(AF )
®)
The noise figure F of the wavelength conversion processis.
_ SNR(0) _ R/Af
A28 T aNR(L) SNR(L)
(6)

o Nsror+[A(L) © TAL) P (IB(L) I* +Ngror)

2 + 2
|B(L) | | B(L) | (R/Af)
where the anti-Stokes input wave shot noise has been used as the reference. In the limit of a
large input signal the minimum noise figure reduces to:

NS,TOT + | A(I—) |2

FAS—>S,MIN = |B(L) |2 (7)
On the other hand, the noise figure of Stokes to anti-Stokes conversion is given by:
C(L)|? +N
o1 SO Nasror (1) ©
|D(L)| R/ Af

X
where N gror = jo dX'|NAS(X)|2 . In the limit of a large input signal, this expression

reducesto:
|C(L) I +N s ror

FSAAS,MIN =1+ - )

|D(L)
Equations (7) and (9) provide a physical picture of the origin of the noise in the CARS
conversion process. The excess noise figure has two parts. In the anti-Stokes to Stokes

conversion, for example, the term proportional to | A(L) |* originates from the zero-point
fluctuations of the Stokes input, which propagates from x = 0 to x = L while mixing with the
converted signal. On the other hand, the term proportional to N g 1o quantifies the noise

from the material vibrations that are coupled to the Stokes wave and the converted signal.
As an example, next we will calculate the noise figure in the case of perfect phase-

matching (A = 0) with @, = 0; the relevant coefficients are given in the Appendix B in
Egs. (B9) and (B10). There are two regimes in which we are interested. The first case is when

gox>>1  with  gg(r?—1)x<<1, which gives |A(X)[*= @1+ gsx)’,

| B(X) P~ (rgsx)z and Ngor = 204X Inthis case, the minimum noise figure becomes:

Fasosmn =1+@/r?) =2, (10)
which is close to the minimum noise figure of an optical amplifier.
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The second case is when g¢(r* —1)X >> 1 and the conversion efficiency saturates. In
4 2

r r
thiscase, | A(X) '~ ——— , |B(X)|’= ——— and N =~———,s0the
|AC P~z —pyz + 1BOOIP= oz ad Noror = 55
minimum noise figure reduces to:
Frsosun =2+12—(1/r%) =2. (11)

These expressions deviate from the ideal amplifier by a factor which depends on the ratio
of the photon energies of the Stokes and anti-Stokes waves, as well as the difference in their

indices of refraction and their nonlinear susceptibilities. In the case of AS =0 for Stokesto
anti-Stokes conversion, we have the following limiting values for the noise figure:

[2+;2 ,
(rgsx)
2 2
12+@, gs(r> —)x>>1.
r

In Fig. 1, we display the noise figure vs. pump intensity for the Stokes to anti-Stokes and
anti-Stokes to Stokes conversion processes for perfect phase matching with an interaction
length L of 2 cm, 2gs = (30 cm/GW)xlp and r = 1.2 (typical parameters for semiconductor
Raman media). We note that the curves for the two processes are qualitatively similar,
converging in the weak pump limit, and asymptotically approaching the limiting value near 3
dB in the strong pump regime. When the intensity is low the noise figure is heavily impaired
due to the low conversion gain, but a high intensity the guantum noise approaches a limit
similar to the 3 dB minimum in amplifiers.

gs(r’-1x<<1

FS—)AS,MIN = (12

30 T T

25t \ — Stokes to anti-Stokes

\ === Anti-Stokes to Stokes

20t

15}

Noise figure F (dB)

10 10" 10° 10°
Pump intensity (MW/cmz)

Fig. 1. The noise figure for signal conversion with perfect phase-matching is shown for
interaction length L = 2 cm, a gain coefficient 2gs = (30 cm/GW)xIlp andr = 1.2.
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We have also plotted the noise figure for both Stokes to anti-Stokes and anti-Stokes to
Stokes conversion as a function of the phase-mismatch, with r =1.2, gs =0.25cm™

(which translates to a gain coefficient of 0.5 Cm_l) and L = 2 cm (see Fig. 2). Interestingly,
the noise figure rapidly becomes large as the phase mismatch is increased, yet also shows
periodic undulations corresponding with the well-known relationship between CARS
efficiency and phase mismatch.

60 T T
--+-- anti-Stokes toStokes

—— Stokes to anti-Stokes LonnARAA

an
o

I
o

Noise figure F (dB)
N w
o o

10

O 'l 'l 'l 'l
0 20 40 60 80 100

Phase mismatch AB (cm'l)

Fig. 2. The noise figure variation with the phase-mismatch for both Stokes and anti-Stokes
scattering with L =2 cm, I = 1.2, a gain coefficient 30 cnVGW and a pump intensity of 17
Mw/em?’ ( gg =0.25¢cm™).

4. Photon number distribution

We have also calculated the photon-number distribution for anti-Stokes (Stokes) photons at
the output when the Stokes (anti-Stokes) field at the input is a coherent state. To perform the
calculation we assume the “lumped” input-output relationships:

A (X) = A4 (0)+Bals (0)+ NN * (139)
a's(X) = DAg(0) + CA’s(0) + N N*, (13b)
with the commutator [N, N *1=1. The quantity \N 5\2 equals the quantity N, in Section
4 of the paper and ‘NAS‘Zequals N xsror - The quantities A,B,C,D are the same quantities that

arppear in equations (2a) and (2b). Formulated in this way, the lumped description of (13a)
and (13b) gives the same results as the description of (1a) and (1b).

To derive the photon statistics, we assume that the reservoir isin athermal state with the
following density matrix:
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: (14)

p=-03q'|n),(n

where g =(n)_/(1+(n)_) and (n)_is the thermal occupation number of the reservoir. The

probability distribution for both Stokes to anti-Stokes conversion and anti-Stokes to Stokes
conversion hasthe following form:
2
Ha"(2-1)

p(n,) =& (1-A*L, | ==, (15)

n —v\N
where Lno(x) :Znn’;o( SJ% is the Laguerre polynomial of order N, and |a|2 is the

mean photon number of the input coherent state. For Stokes to anti-Stokes conversion
I A= D I(u+|DJ?) and A=(U+|DP)/(L+u+|DJ?) with
U=|N, [ q/(1-q), wheress, for anti-Stokes to Stokes conversion
ul A=|BF I(u+|BP) ad  A=(U+|BP)/(L+u+|BP) with

u'=| Ng [ /(1— ). The distribution has the mean value: <n0> = (/1+,u|a|2)/(1— A). A
derivation of this result for the simplified case where the reservoir is in the ground tate is

presented in Appendix C. Notice that when there is no input signal (a = 0) the photon
distribution in Eq. (15) becomes a thermal distribution; the spontaneously emitted Stokes and
anti-Stokes fields in CARS have thermal distributions with a temperature that is determined

by the parameter A .

In Fig. 3, we show a representative plot of the probability distribution for anti-Stokes to
Stokes conversion in the case of a coherent state input with a mean photon humber of 400.
This input yields a mean output photon number 45; for comparison, we have also plotted a
Gaussian distribution with this mean value, illustrating that the tails of the CARS distribution
deviate significantly from the perfect Gaussian. In particular, we see that the Gaussian
approximation is adequate near the peak of the distribution, but becomes completely invalid
for improbable events. This deviation may be very significant for applications in which the
tails of the distribution are critical, such as data transmission and spectroscopic detection of
dilute species. For example, knowledge of the tails may be important for determining the
minimum bit error rate (BER) in a CARS wavelength converter or the concentration threshold
for detection and identification in CARS spectroscopy. In Fig. 3, we also show the probability
distribution for the Stokes output in the case of no input signal (spontaneous emission). In all
the plots, the reservoir is taken to be in the ground state.
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0
10 T

== Coherent state input, <n>=400
9 === Gaussian fit to <n> =400 graph
10'1, '~.,. === No input_, spontaneous i
e, Stokes distribution
-2
10 r -
2
® 10 | 3
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o
-4
10 | 3
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10 = 3
10 10

Stokes photon number

Fig. 3. Photon number probability distribution for the Stokes output with an anti-Stokes input
of 400 photons (mean number) and a gain parameter gsxL =033 assuming perfect phase-

matching. The mean photon number at the Stokes output is 45; the best fit Gaussian for this
mean value is plotted for comparison. The Stokes at the output with no anti-Stokes input is also
shown (only spontaneous emission present). The noise reservoir is taken to be in the ground
state.

5. Conclusions

We have determined the noise in the CARS process by employing Langevin sources to keep
the commutators of the field operators of the Stokes and anti-Stokes waves constant. We have
calculated the noise figure and photon statistics for the wavelength conversion processes of
Stokes to anti-Stokes and vice versa. The noise in the output Stokes and anti-Stokes fields has
two contributions. One part is due to the input zero-point fluctuations coupling to the output
and the other part is due to the coupling of the optical fields to the damped material vibrations.
The best noise figure achievable is close to the 3 dB noise figure of the optical amplifier with
a correction that depends on the ratio of Stokes to anti-Stokes freguencies, the ratio of the
indices of refraction at the two frequencies, as well as the ratio of their nonlinear
susceptibilities. The photon probability distribution has non-Gaussian tails, which may be
significant for applications in data transmission and spectroscopic detection of highly rarified
Species.
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Appendix A

We start with the classical propagation equations for the Stokes and anti-Stokes fields, which
can be found in standard textbooks of nonlinear optics (see for example[17]):
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d ' ' A *
B g (@) [AF A+ (0 Ko A, A1)

== ps (Wps INps) | A § A;s _Kl(wAs/nAs)(Al)ze_jAﬂxAs’ (A2)

dAs
where A, , Ag and A,g arethe classical amplitudes for the pump, Stokes and anti-Stokes

dx

waves respectively; AfS =2, — s — PBas is the wavevector mismatch between the
waves ( ,B j is the propagation constant of the j-th wave, | = P, Sor AS); the wave frequencies
are denoted by w;; and N j ae the refractive indices. The coefficientsin Egs. (A1) and (A2)

. I 12z : 127 .
are related to the nonlinear susceptibilities by g' =i="= y., & s=1—— s and
c c

1
Wp — W5 — By +1Y
is the phonon damping coefficient, a,, the material vibrational frequency and the Stokes and
anti-Stokes frequencies are related by 2w, =ws+w,,. We make the reasonable
approximation of small detuning from Raman resonance @, — s — @, <<y O that the

susceptibility can be taken to be imaginary for the sake of simplicity.

To obtain the corresponding quantum-field equations, we replace the classical amplitudes
with quantum mechanical operators by the substitution A, — (@, /n;)?&,. This
replacement is similar in purpose to subgtitutions found in standard textbooks (see for

example [18]), but in this case the modes are enumerated in frequency rather than wavevector.
This substitution yields the following differential equationsfor the field operators:

* )1/2

, 127 .
K'=1—(¥sX s , where for example »_ ~ . In this context, y
c

d ~ o iaaa
B~ g4+ xePme ey (A3)
dx
da; A o AR A
dAS = -, 8l — ke e Vg, (Ad)
X

1/2
[(ONN1))
where @, is the phase of the pump wave, g = g'S&‘AP‘Z K= K"(Mj |AP|2
Ng NasNg

@ 2

and g =0’ AS£|AP| . These operators must obey the usual commutation relationships
nAS

[45,851=1, [A,,85] =1 and [&5,8,5] =0.

It is not difficult to see however, that the propagation equations are not consistent with
the uncertainty principle. For example, in the absence of coupling between the Stokes and
anti-Stokes waves, it is well known that these modes experience only gain and loss,
respectively. In this situation, however, the propagation equations displayed above predict that
the commutators of the field operators are not conserved: d[&;,a;]/dx # 0. But thisis
inconsistent with basic quantum theory. The commutator of the field operators determines the
noise limit imposed by the uncertainty principle. More specificaly,

<Aaj1|2><Aaj,Q2>z(1/4)<[aj,|,am]>2, where &, =(1/2)(4 +a")  and
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aj’Q:(l/ 2i)(éj —é;) represent the in-phase and quadrature components of the

electromagnetic field. We must modify the propagation equations to include a so-called
Langevin noise source operator, which restores the commutator to a constant value, i.e.,

d[a,, 4 ,]/dx=0. The analysis presented here is inspired by the analysis of an optica

amplifier in [19]. Since al the terms in the propagation equations are due to coupling of the
optical fields with the damped vibrational modes in the material, we need to introduce only
one ‘noise reservoir’ into the propagation equations. As we will show we can obtain
consistent results with this approach.

Consider firgt the equation describing the evolution of the Stokes mode (decoupled from

the anti-Stokes) and add a noise source operator F :

dag /dx=ggas +F;. (A5)

The commutator conservation equation gives the condition:

[Fs,a5]+[as, Fe ] =295 . The noise operator and the field operator do not commute. The
inhomogeneous solution of the propagation equation gives:

A

INH X o "\ & '
as"™" = [ dxexp(gs(x—X))Fs (). (A6)
Since the noise is uncorrelated along the propagation, the commutator of the noise source
with its conjugate should be proportional to a delta function; thus,

[&"™ (%), F¢ (9] = 1/ 2)C. (A7)
where C is a proportiondity constant. In order to satisfy Eq. (AS), we must have C =-2g¢
and the noise sources must obey the following commutation relation:

[Fe (), F& (X)) =-2g56(x - X) - (A8)
Notice that the commutator has a negative value, implying that IfG (X) acts as a creation

operator and IfG+ (x) asan annihilation operator for “noise reservoir” excitations. To make the
correspondence more  explicit we rename the noise source  operator:
Fo (X) = exp(j 05 ),/295 N* (x), where N(x) and N*(x) are now standard annihilation and
creation operators with [N(x), N* (x')] = 8(x—x') and exp(j6s) isan undetermined phase
factor whose purpose will become clear below. In a similar manner, we can also show that for
the decoupled anti-Stokes mode, the noise source F, (X) = exp(— O ){/20ps N(X) IS
required.

If the Stokes and anti-Stokes modes are coupled, we must also require that
d[&s,8,5]/dx =0 and d[&g,4,5]/dx=0. It is not difficult to see that the first

condition is satisfied using the previous expressions. The purpose of the explicit phase factors
included above becomes clear when we examine the second condition. Although the values of

these phase factors have no impact on the previous condition (as long as 85 and 6, are
real), they must be constrained to satisfy the second condition. Inserting the renamed noise
operators into the equations of propagation and requiring d[ag,a,5]/ dx = 0, we obtain the
condition:
j (ABX+2 A A J (ABX+2 A A
Ke]( ﬂX+ qﬂP)[aZS’aAS] — Ke]( :B><+ @P)[as’a;]

+exp(js)/29s N™,8,s]+exp(-] Ops )/ 20 55[85,N] =0.
We can evaluate the last two commutators in this expression using the inhomogeneous
solution of the propagation equations:

(A9)
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ay(X) = exp(jHS)q/ZgSJ‘:dx' P.(x— X)N"(x) (A10)

816 (X) = X[ Ops ) 205 [ X P, (x=X)NT (X)), (ALD)

where in the above expressions Ps(0) = P,5(0) =1. Thefunctions Pg(X) and P,g(X)

are calculated explicitly in Appendix B (see equations (B9) and (B10)). Inserting (A10) and
(A11) in (A9) we obtain:

Os — Ops = ABX+ 20, + 70, (A12)
where we have incorporated the relations, &g = I‘2gS andx =rgg in the last step, with
1/2
r= OpsNs (X" as! X s)
WsNps

In what follows, we choose 65=-7/2 and

0, =—AB-X—2¢, — (37 2) without loss of generality. Our final equations are:
dag
dx
Bos — _r2g,a1, 10, XD(- (A8 X+ 20, )i
dx (A14)

+ jexp(=j(AB- X+ 20, )y 2r 2gs N ™.

= gshs + s exp(j (ABX+ 20, ))aks — j1[2gsN* (A13)

Appendix B

Here we derive the solution to the coupled differential equations (1a) and (1b) for the Stokes
and anti-Stokes field operators. In Egs. (1a) and (1b) we make the substitutions:

&g = b, exp(jASXI2) , &g = b} exp(—jABX] 2). (1)
Thisyields:

d - . ~ ~ CABKI2W N+
5 0s = (95— i(AB12))bs + 1960} - j2gse IWXIZN* (%) (B2)
d-~ . -
d_bAS :(J(Aﬂlz)_rzgs)bAs_rgsg bg
X (B3)
+jO* e 1¥XI2 Jor2g N*(x),
where € = exp(]2¢;) .

It is easy to see that the linear combinations:
U, =bs+Cbi,U_ =bs+C_ by, (B4)
with

(P +Dgs —iAB) £((r? +Dgs —iAB)? —4r?g2 5

C., =
@ 2rgg

(BS)

obey the following equations:
d

&u(t) = A(t)u(r) +]4/205 (“9* Cw —1)‘37]Aﬁ'X/2N+(X) , (B6)

where C(i) = (gs —|(A,B/2) _A(i))el(rgs) or
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_ 95@-17)F(g5@+17)-i8B)* ~4r’gg (87)
® = '
2
The solution of EqQ. (B6) is:

UA(i) (x) = exp<A(t)X)‘j(i) )
+ j ng (re* C(i—) _1).[0delexp(A(i)(X_ X-))e—JAﬁAx'/2N+(X.).

Using Eq. (B4) wefind the final expressions for the Stokes and anti-Stokes operators:
Cpy &Xp(A)X) = Cp,y Xp(A)X) »

A

(B)

by (x) = by (0)
Coy=Cy
exp(A ., X) —exp(A _X) ~
+CCe P )~ OP(A ) b5 (0)
Coy —Ce (B9)
_ X (rée*C.,, —DC., exp(A,,(X—x"))
+ /204 dx'{
IO Coy =Co
_(rg*Cp, ~DC,) exp(A, (X X)) eI ()
Coy=Cy
- exp(AH) X) - exp(AH X) "
bas(X) = bs(0)
” Cey=Coy ’
C A -C A ~
L) exp(A yX) —Cp) &XP(A)X) b2 (0) (B10)
Cey =Co

+)
+if2 x X' (I‘H* C(+) _1) exp(AH(x— X'))
]\/?SL ‘ Ce —Coy
B (ro*Cy —Dexp(A,(x-X)) o
C(+) - C(*)

Substituting Egs. (B9) and (B10) into Egs. (B1) we find the solution for the field

operators &g and A,g. The parameters A, B, C and D that appear throughout the main text
are then given by the respective coefficients of the equations.

—iAB-X'12 N+ (X').

Appendix C

Here we derive the expression given above for the photon number probability distribution in
CARS wavelength conversion. To calculate the probability distribution, we must determine its
characteristic function defined as the Fourier series of the probability distribution:

Pl =3 p(me™ =(e7). G

which is also the expectation value of e M where n isthe photon number. The probability
distribution is expressed in terms of the characteristic function as:

plng) =~ [[“dke (e 7). ©

We present the calculation of the characteristic function for anti-Stokes to Stokes
conversion; the derivation for Stokes to anti-Stokes conversion proceeds in a similar fashion.
Also we take the reservoir to be in the ground state. The case where the reservoir is in a
thermal state is slightly more complicated to compute but similar to the calculation below.

The characteristic function to be evaluated is:
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(expl- kA% (A5 () =r (0], (a] (0] expl- KaS (085 ()] 0)[8) o[ O) - (C3)
We will need the expansion of the exponentia with the operators put in normal and in
anti-normal order:

ep-aa)-3C Vlaran 4
exp-&a'a)=¢f nz_(:)(l_ri)é” @). (C5)

These results can be found for example in [20]. Next, we compute

<(é.S (x)" (ég (X) )n > .The expectation value is given by:

0], 0180 62000 )]0 =3 el 7"
where we have used the binomial expansion and kept only surviving terms. If we substitute
therelations 77 =| A|* and &'=| Ba|* /7 into the previous expression, we can rewrite it as;
n o ' n J n .
[\ o0 o[ [) sty a7
The characteristic function can now be expressed as.

oo _aéy\n n
(expl- fa;<x>as(x>)>=ef;%<as<x>“(é;<x>) )

oo _aéy\n n
:eiz—(l rj) 77”(1+ai§|] (&)

Next, considering 1+ d/9&" and &' as operators we note that [1+9/0&', &' =1 so

that they have the same commutation relationship as & and A°. We define a new
variable&" as 17 —17e° =1—€°", which we use to rewrite the characteristic function:

(expl- &85 (04 (x))) = e +7777 12(1 e_f)( agj (&)

exp(=¢"¢'(1+019¢)).
Next we utilize the normal form of the exponential of f (A+9/9&"), which gives:
(expl- 285 (s () = ¢ nl)e > i @y arara)

_1+(m-De '°°(e —1)” A
= - ZO . (&)

_pe
SLHODeT s a-et)).

Finally, substituting &' and setting £ = jK we obtain the characteristic functionin
closed form:

_1+( ~e*’
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lexpl- ka5 (9as () =¥ ——© exp( 3 ] (c8)

1+n(e* -1) 1+n(e* -1
As previously stated, the probability that the photon number a5 (X)ag(X) has a value
N, given acoherent state with amplitude @ as the input is given by the Fourier transform of
the characteristic function. To compute the transform, we rewrite the integral obtained from
Egs. (C2) and (C6) by changing to the variable Z = ek
z"* $'In
p(n, | @) = eﬁjzﬂ‘( _Z)exp[z_zoj, ()

where z, = (7 —1)/n andtheintegrand hasapolea zZ = z,. To evaluatethisintegral, we

expand the exponentia and carry out the integration in the complex plane of every term in the
expansion. Theresult is:

p(n, |a) = e—éz(é:/ﬂ) J‘ Znodz n+1— _¢Z(n j(.f/n) (o)

n=0 77”'

Thisisthe distribution we are seekl ng.
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