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Abstract:  Coherent anti-Stokes Raman scattering (CARS) is a well-known 
Raman scattering process that occurs when Stokes, anti-Stokes and pump 
waves are properly phase-matched. Using a quantum-field approach with 
Langevin noise sources, we calculate the noise figure for wavelength 
conversion between the Stokes and anti-Stokes waves in CARS and show 
its dependence on phase mismatch. Under phase matched conditions, the 
minimum noise figure is approximately 3 dB, with a correction that depends 
on the pump frequency, Stokes shift, refractive indices, and nonlinear 
susceptibilities. We calculate the photon statistics of CARS and show that 
the photon number distribution is non-Gaussian. Our findings may be 
significant for currently pursued applications of CARS including 
wavelength conversion in data transmission and spectroscopic detection of 
dilute biochemical species. 
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1. Introduction 

Coherent anti-Stokes Raman scattering (CARS) is a nonlinear optical process in which energy 
is parametrically transferred between phase-matched Stokes and anti-Stokes fields via 
interaction with vibrational modes of the material in the presence of a strong pump wave. 
Since its discovery by Maker and Terhune in the early days of nonlinear optical research [1], 
it has found numerous applications in spectroscopy and substance identification [2,3] and 
continues as an active field of applied research [4-9]. CARS was also recently demonstrated in 
silicon and has been proposed as means of wavelength conversion between the 
technologically important 1300 nm and the 1550 nm wavelength bands [10]. 

An important topic that has been discussed is the fundamental noise in the CARS process. 
To our knowledge, the first investigation to address the issue of noise in CARS was conducted 
by Perina et al [11-13] with more recent investigations due to Voss et al [14-15]. Scully et al 
[16] have also addressed this issue in the context of an ultra-fast spectroscopic technique they 
proposed for detection of rarified bacterial spores [4]. In References [11-13], the photon 
statistics were calculated for the CARS process, but the treatment is in the time-domain. The 
treatment in [16] is also in the time-domain. Voss et al used spatial propagation equations for 
the optical fields and calculated the noise figure for Raman amplification and CARS [14-15], 
but did not calculate the photon statistics. 

In this paper, we formulate the problem using spatial propagation equations and obtain 
both the noise figure and, for the first time, the photon statistics using such an approach. 
Although the time-domain approach is appropriate for cavity dynamics, this spatial treatment 
is more suitable for treating waveguide propagation where the effects of waveguide and 
material dispersion, as well as phase mismatch are explicitly included. We obtain the 
propagation equations for Stokes and anti-Stokes fields in a different manner than that 
employed in [14-15]. We demonstrate that the minimum noise figure obtained at perfect phase 
matching is close to 3 dB, but deviates from this value by a factor that depends on the 
contribution of both linear and nonlinear dispersion, as well as the Stokes shift and pump 
frequency. There are two distinct contributions to the noise in the output signal: (1) noise 
originating from the zero point fluctuations of the inputs and (2) noise originating from the 
coupling of the Stokes and anti-Stokes fields with the damped material vibrations.   We also 
calculate the full photon probability distribution at the output wavelength, and show that its 
tails deviate significantly from those of the Gaussian distribution. These findings may be 
important for determining the minimum bit error rate (BER) in CARS data transfer, as well as 
the fundamental detection limit of CARS spectroscopy. 

We start with the classical equations for CARS and convert them into propagation 
equations for the quantum field operators for the Stokes and anti-Stokes modes. Using these 
equations, we derive the noise sources for the Stokes and the anti-Stokes fields by imposing 
the requirement that the commutators of their field operators must be conserved. Throughout 
the paper we deal with an ideal medium that does not have optical losses or permit other 
nonlinear optical processes. Optical losses (linear or nonlinear) can be easily included 
numerically, but are not discussed here because they are not fundamental to the CARS 
process. 
 

#73746 - $15.00 USD Received 7 August 2006; revised 13 October 2006; accepted 13 October 2006

(C) 2006 OSA 13 November 2006 / Vol. 14,  No. 23 / OPTICS EXPRESS  11419



2. Equations of motion 

The CARS process increases the noise in both the Stokes and anti-Stokes fields. These modes 
are coupled together through interaction with the damped vibrational phonons of the material 
and since CARS involves dissipative interactions, it must introduce noise into the optical 
signals. The propagation of the Stokes and anti-Stokes field operators (denoted Sâ  and ASâ  

respectively), including the effect of this excess noise (using the Langevin noise operators  

)(ˆ),(ˆ xNxN +  discussed below) are described by the following two equations:  
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These equations are derived in Appendix A starting from the classical field-amplitude 

equations of CARS, replacing the field amplitudes with quantum field operators, and invoking 
the principle of “commutator conservation.” In the above equations the operators that appear 

obey the following commutation relationships: 1]ˆ,ˆ[ =+
SS aa , 1]ˆ,ˆ[ =+

ASAS aa , 0]ˆ,ˆ[ =+
ASS aa  

and, since the noise is uncorrelated at each spatial point, )'()]'(ˆ),(ˆ[ xxxNxN −=+ δ .  The 

quantity ASSP ββββ −−=Δ 2  is the wavevector mismatch between the waves ( jβ  is the 

propagation constant of the j-th wave, with j = P, S or AS), Sg  is equal to one half of the 

Raman (power) gain coefficient, Pϕ  is the phase of the pump wave and 

ASS

SASSAS

n

n
r

ω
χχω 2/1)/*(

= , where ASS ωω ,  are Stokes and anti-Stokes frequencies, 

ASS nn ,  the indices of refraction and ASS *, χχ  are the Raman susceptibilities. Since we 

will be interested in a narrow frequency band around the center of the Raman resonance, Sg  

and r are real quantities. 
The above equations (1a) and (1b) have the property that they conserve the commutators 

of the Stokes and anti-Stokes fields along propagation in the x-direction, so that for example, 
)]'(ˆ),'(ˆ[)](ˆ),(ˆ[ xaxaxaxa SSSS

++ = .  This is achieved in the equations through the presence of 

the terms involving the “Langevin noise source operators” )(ˆ),(ˆ xNxN + , which introduce 
fluctuations in the Stokes and anti-Stokes fields, as described in more detail below. 

The general solution to the above equations is: 

∫
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The details to the above solution along with general expressions for the A, B, C and D 
coefficients are presented in full in Appendix B. 
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3. Wavelength conversion noise figure 

We can now calculate the fluctuations of the Stokes (anti-Stokes) field at the output x = L of 
the wavelength converter, when there is anti-Stokes (Stokes) field present at the input x = 0. 
Let us consider, for example, the case where there are no photons at the Stokes frequency and 
the anti-Stokes wave at the input is a coherent state. The assumption of zero photons in the 
Stokes input is a good one, since at room temperature the mean photon number of the thermal 

optical radiation is practically zero. In our notation, 
S

,
AS

 denotes the states of the 

Stokes and  anti-Stokes inputs, respectively. 
At this point we need to discuss the concept of the noise reservoir “states.” At every point 

x in the waveguide, the state of the reservoir is denoted by 
xR ,

 (the states on which the 

operators )(ˆ xN  and )(ˆ xN +  act). To simplify the notation we will use the combined state 

∏=
x

xRR ,
 in the calculations. Since the noise reservoir creates fluctuations in the 

vibrational mode with which the optical waves interact, the frequency of the reservoir is that 
of the material vibrations. The noise sources originate from the fluctuations in the vibrational 
modes being “upconverted” to the Stokes and anti-Stokes frequencies due to interaction with 
the optical pump wave. To show this, one takes the noise reservoir to be a thermal density 

matrix and calculates the mean Stokes photon number in the case Sg>>Δβ  (where Stokes 

and anti-Stokes are uncoupled) when there is no input at x = 0. This gives the Stokes 
spontaneous emission rate, which is proportional to the mean number of reservoir quanta plus 
one. Since we know that the Stokes spontaneous emission rate is also proportional to the mean 
phonon number plus one, we can identify the reservoir frequency with the vibrational mode 
frequency. We will assume next that the noise reservoir is in the ground state 

( VIBkT ω�<< ). 

We will calculate the noise figure first for the case of anti-Stokes to Stokes conversion 
when the anti-Stokes input is a coherent state of amplitude a . This situation corresponds to 

the state 
RASS

a 00  and the mean input photon number in the anti-Stokes field is 2|| a . 

Referring to Eqs. (2a) and (2b), we can express the mean photon rate at the Stokes output 
as: 
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So far we have discussed single frequency signals; if the photons are sent in a pulse of spectral 

width fΔ , then fRa Δ= /|| 2 , where R  is the input photon rate. The optical (signal-to-
noise ratio) SNR for an ideal photodetector is: 
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The noise figure F of the wavelength conversion process is:  
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where the anti-Stokes input wave shot noise has been used as the reference. In the limit of a 
large input signal the minimum noise figure reduces to: 
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On the other hand, the noise figure of Stokes to anti-Stokes conversion is given by: 
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where ∫=
x

ASTOTAS xNdxN
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, )(' . In the limit of a large input signal, this expression 

reduces to:  
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Equations (7) and (9) provide a physical picture of the origin of the noise in the CARS 
conversion process. The excess noise figure has two parts. In the anti-Stokes to Stokes 

conversion, for example, the term proportional to 2|)(| LA  originates from the zero-point 
fluctuations of the Stokes input, which propagates from x = 0 to x = L while mixing with the 

converted signal. On the other hand, the term proportional to TOTASN ,  quantifies the noise 

from the material vibrations that are coupled to the Stokes wave and the converted signal. 
As an example, next we will calculate the noise figure in the case of perfect phase-

matching ( 0=Δβ ) with 0=Pϕ ; the relevant coefficients are given in the Appendix B in 
Eqs. (B9) and (B10). There are two regimes in which we are interested. The first case is when 

1>>xgS  with 1)1( 2 <<− xrgS , which gives ( )22 1|)(| xgxA S+≈ , 

( )22|)(| xrgxB S≈  and xgN STOTS 2, ≈ . In this case, the minimum noise figure becomes: 

2)/1(1 2
, ≅+=→ rF MINSAS ,                                          (10) 

which is close to the minimum noise figure of an optical amplifier. 
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The second case is when 1)1( 2 >>− xrgS  and the conversion efficiency saturates. In 

this case,  
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These expressions deviate from the ideal amplifier by a factor which depends on the ratio 
of the photon energies of the Stokes and anti-Stokes waves, as well as the difference in their 
indices of refraction and their nonlinear susceptibilities. In the case of 0=Δβ  for Stokes to 
anti-Stokes conversion, we have the following limiting values for the noise figure: 
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In Fig. 1, we display the noise figure vs. pump intensity for the Stokes to anti-Stokes and 
anti-Stokes to Stokes conversion processes for perfect phase matching with an interaction 
length L of 2 cm, 2gS = (30 cm/GW)×IP  and r = 1.2 (typical parameters for semiconductor 
Raman media). We note that the curves for the two processes are qualitatively similar, 
converging in the weak pump limit, and asymptotically approaching the limiting value near 3 
dB in the strong pump regime. When the intensity is low the noise figure is heavily impaired 
due to the low conversion gain, but at high intensity the quantum noise approaches a limit 
similar to the 3 dB minimum in amplifiers.  
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Fig. 1. The noise figure for signal conversion with perfect phase-matching is shown for 
interaction length L = 2 cm, a gain coefficient 2gS = (30 cm/GW)×IP  and r = 1.2. 
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We have also plotted the noise figure for both Stokes to anti-Stokes and anti-Stokes to 

Stokes conversion as a function of the phase-mismatch, with 2.1=r , 1 25.0 −= cmgS  

(which translates to a gain coefficient of 1cm 5.0 − ) and L = 2 cm (see Fig. 2). Interestingly, 
the noise figure rapidly becomes large as the phase mismatch is increased, yet also shows 
periodic undulations corresponding with the well-known relationship between CARS 
efficiency and phase mismatch. 
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Fig. 2.  The noise figure variation with the phase-mismatch for both Stokes and anti-Stokes 

scattering with L = 2 cm, 2.1=r , a gain coefficient 30 cm/GW and a pump intensity of 17 

MW/cm2  ( 1 25.0 −= cmg S
). 

4.  Photon number distribution 

We have also calculated the photon-number distribution for anti-Stokes (Stokes) photons at 
the output when the Stokes (anti-Stokes) field at the input is a coherent state.  To perform the 
calculation we assume the “lumped” input-output relationships: 

++ ++= NNaBaAxa SASSS
ˆ)0(ˆ)0(ˆ)(ˆ                                     (13a) 

+++ ++= NNaCaDxa ASASSAS
ˆ)0(ˆ)0(ˆ)(ˆ ,                               (13b) 

with the commutator 1]ˆ,ˆ[ =+NN . The quantity 2

SN  equals the quantity 
TOTSN ,

 in Section 

4 of the paper and 2

ASN equals 
TOTASN ,

. The quantities A,B,C,D are the same quantities that 

arppear in equations (2a) and (2b). Formulated in this way, the lumped description of (13a) 
and (13b) gives the same results as the description of (1a) and (1b). 

To derive the photon statistics, we assume that the reservoir is in a thermal state with the 
following density matrix:  
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where )1/(
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nnq +=  and 
R

n is the thermal occupation number of the reservoir. The 

probability distribution for both Stokes to anti-Stokes conversion and anti-Stokes to Stokes 
conversion has the following form: 
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 is the Laguerre polynomial of order 0n  and 
2

a  is the 

mean photon number of the input coherent state. For Stokes to anti-Stokes conversion 

)||/(||/ 22 DuD +=λμ  and )||1/()||( 22 DuDu +++=λ  with 

)1/(|| 2 qqNu AS −= , whereas, for anti-Stokes to Stokes conversion 

)||'/(||/ 22 BuB +=λμ  and )||'1/()||'( 22 BuBu +++=λ  with 

)1/(||' 2 qNu S −= . The distribution has the mean value: ( ) ( )λμλ −+= 1/
2

0 an . A 

derivation of this result for the simplified case where the reservoir is in the ground state is 
presented in Appendix C. Notice that when there is no input signal ( 0=a ) the photon 
distribution in Eq. (15) becomes a thermal distribution; the spontaneously emitted Stokes and 
anti-Stokes fields in CARS have thermal distributions with a temperature that is determined 
by the parameter λ . 

In Fig. 3, we show a representative plot of the probability distribution for anti-Stokes to 
Stokes conversion in the case of a coherent state input with a mean photon number of 400. 
This input yields a mean output photon number 45; for comparison, we have also plotted a 
Gaussian distribution with this mean value, illustrating that the tails of the CARS distribution 
deviate significantly from the perfect Gaussian. In particular, we see that the Gaussian 
approximation is adequate near the peak of the distribution, but becomes completely invalid 
for improbable events. This deviation may be very significant for applications in which the 
tails of the distribution are critical, such as data transmission and spectroscopic detection of 
dilute species. For example, knowledge of the tails may be important for determining the 
minimum bit error rate (BER) in a CARS wavelength converter or the concentration threshold 
for detection and identification in CARS spectroscopy. In Fig. 3, we also show the probability 
distribution for the Stokes output in the case of no input signal (spontaneous emission). In all 
the plots, the reservoir is taken to be in the ground state. 
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Fig. 3. Photon number probability distribution for the Stokes output with an anti-Stokes input 
of 400 photons (mean number) and a gain parameter 33.0=× LgS

, assuming perfect phase-

matching. The mean photon number at the Stokes output is 45; the best fit Gaussian for this 
mean value is plotted for comparison. The Stokes at the output with no anti-Stokes input is also 
shown (only spontaneous emission present).  The noise reservoir is taken to be in the ground 
state. 

5. Conclusions 

We have determined the noise in the CARS process by employing Langevin sources to keep 
the commutators of the field operators of the Stokes and anti-Stokes waves constant. We have 
calculated the noise figure and photon statistics for the wavelength conversion processes of 
Stokes to anti-Stokes and vice versa. The noise in the output Stokes and anti-Stokes fields has 
two contributions. One part is due to the input zero-point fluctuations coupling to the output 
and the other part is due to the coupling of the optical fields to the damped material vibrations. 
The best noise figure achievable is close to the 3 dB noise figure of the optical amplifier with 
a correction that depends on the ratio of Stokes to anti-Stokes frequencies, the ratio of the 
indices of refraction at the two frequencies, as well as the ratio of their nonlinear 
susceptibilities. The photon probability distribution has non-Gaussian tails, which may be 
significant for applications in data transmission and spectroscopic detection of highly rarified 
species. 
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Appendix A  

We start with the classical propagation equations for the Stokes and anti-Stokes fields, which 
can be found in standard textbooks of nonlinear optics (see for example [17]): 
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where PA , SA  and ASA  are the classical amplitudes for the pump, Stokes and anti-Stokes 

waves respectively; ASSP ββββ −−=Δ 2  is the wavevector mismatch between the 

waves ( jβ  is the propagation constant of the j-th wave, j = P, S or AS); the wave frequencies 

are denoted by jω ; and jn  are the refractive indices. The coefficients in Eqs. (A1) and (A2) 

are related to the nonlinear susceptibilities by 
SS c

ig χπ12
' = , *12

' ASAS c
i χπα =  and 

2/1* )(
12

' ASSc
i χχπκ = , where for example 

γωωω
χ

iVIBSP
S +−−

1
~ . In this context, γ 

is the phonon damping coefficient, VIBω  the material vibrational frequency and the Stokes and 

anti-Stokes frequencies are related by ASSP ωωω +=2 . We make the reasonable 

approximation of small detuning from Raman resonance γωωω <<−− VIBSP
 so that the 

susceptibility can be taken to be imaginary for the sake of simplicity. 
To obtain the corresponding quantum-field equations, we replace the classical amplitudes 

with quantum mechanical operators by the substitution 
jjjj anA ˆ)/( 2/1ω→ . This 

replacement is similar in purpose to substitutions found in standard textbooks (see for 
example [18]), but in this case the modes are enumerated in frequency rather than wavevector. 
This substitution yields the following differential equations for the field operators:  

+Δ+= AS
xjj

SS
S aeeag

dx

ad
P ˆˆ

ˆ 2 βϕκ                                   (A3) 

S
xjj

ASAS
AS aeea

dx

ad
P ˆˆ

ˆ 2 βϕκα Δ−−+
+

−−= ,                       (A4) 

where Pϕ  is the phase of the pump wave, 2
' P

S

S
SS A

n
gg

ω= , 
2

2/1

' P
SAS

SAS A
nn ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ωωκκ  

and 
2

' P
AS

AS
ASAS A

n

ωαα = . These operators must obey the usual commutation relationships 

1]ˆ,ˆ[ =+
SS aa , 1]ˆ,ˆ[ =+

ASAS aa  and 0]ˆ,ˆ[ =+
ASS aa . 

It is not difficult to see however, that the propagation equations are not consistent with 
the uncertainty principle. For example, in the absence of coupling between the Stokes and 
anti-Stokes waves, it is well known that these modes experience only gain and loss, 
respectively. In this situation, however, the propagation equations displayed above predict that 

the commutators of the field operators are not conserved: 0/]ˆ,ˆ[ ≠+ dxaad jj . But this is 

inconsistent with basic quantum theory. The commutator of the field operators determines the 
noise limit imposed by the uncertainty principle. More specifically, 

[ ] 2

,,
2

,
2

, ˆ,ˆ)4/1(ˆˆ QjIjQjIj aaaa ≥ΔΔ , where )ˆˆ)(2/1(ˆ ,
++= jjIj aaa  and 

#73746 - $15.00 USD Received 7 August 2006; revised 13 October 2006; accepted 13 October 2006

(C) 2006 OSA 13 November 2006 / Vol. 14,  No. 23 / OPTICS EXPRESS  11427



)ˆˆ)(2/1(ˆ ,
+−= jjQj aaia  represent the in-phase and quadrature components of the 

electromagnetic field. We must modify the propagation equations to include a so-called 
Langevin noise source operator, which restores the commutator to a constant value, i.e., 

0/]ˆ,ˆ[ ,, =dxaad QjIj
. The analysis presented here is inspired by the analysis of an optical 

amplifier in [19]. Since all the terms in the propagation equations are due to coupling of the 
optical fields with the damped vibrational modes in the material, we need to introduce only 
one ‘noise reservoir’ into the propagation equations. As we will show we can obtain 
consistent results with this approach. 

Consider first the equation describing the evolution of the Stokes mode (decoupled from 

the anti-Stokes) and add a noise source operator GF̂ : 

GSSS Fagdxad ˆˆ/ˆ += .                                         (A5) 

The commutator conservation equation gives the condition: 

SGSSG gFaaF 2]ˆ,ˆ[]ˆ,ˆ[ −=+ ++ . The noise operator and the field operator do not commute. The 

inhomogeneous solution of the propagation equation gives:  

)'(ˆ))'(exp('ˆ xFxxgdxa GS

xINH
S −= ∫ ∞−

.                                      (A6)  

Since the noise is uncorrelated along the propagation, the commutator of the noise source 
with its conjugate should be proportional to a delta function; thus, 

CxFxa G
INH

S )2/1()](ˆ),(ˆ[ =+ ,                                          (A7) 

where C is a proportionality constant. In order to satisfy Eq. (A5), we must have 
SgC 2−=  

and the noise sources must obey the following commutation relation: 

)'(2)]'(ˆ),(ˆ[ xxgxFxF SGG −−=+ δ .                                       (A8) 

Notice that the commutator has a negative value, implying that )(ˆ xFG
 acts as a creation 

operator and )(ˆ xFG
+  as an annihilation operator for “noise reservoir” excitations. To make the 

correspondence more explicit we rename the noise source operator: 

)(ˆ2)exp()(ˆ xNgjxF SSG
+= θ , where )(ˆ xN  and )(ˆ xN +  are now standard annihilation and 

creation operators with )'()]'(ˆ),(ˆ[ xxxNxN −=+ δ  and )exp( Sjθ  is an undetermined phase 

factor whose purpose will become clear below. In a similar manner, we can also show that for 
the decoupled anti-Stokes mode, the noise source )(ˆ2)exp()(ˆ xNjxF ASASL αθ−=  is 

required. 
If the Stokes and anti-Stokes modes are coupled, we must also require that 

0/]ˆ,ˆ[ =+ dxaad ASS  and 0/]ˆ,ˆ[ =dxaad ASS . It is not difficult to see that the first 

condition is satisfied using the previous expressions. The purpose of the explicit phase factors 
included above becomes clear when we examine the second condition. Although the values of 

these phase factors have no impact on the previous condition (as long as Sθ  and ASθ are 

real), they must be constrained to satisfy the second condition. Inserting the renamed noise 

operators into the equations of propagation and requiring 0/]ˆ,ˆ[ =dxaad ASS , we obtain the 

condition: 

.0]ˆ,ˆ[2)exp(]ˆ,ˆ[2)exp(

]ˆ,ˆ[]ˆ,ˆ[ )2()2(

=−++

−
+

++Δ++Δ

NajaNgj

aaeaae

SASASASSS

SS
xj

ASAS
xj PP

αθθ

κκ ϕβϕβ

           (A9) 

We can evaluate the last two commutators in this expression using the inhomogeneous 
solution of the propagation equations: 
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∫
+−=

x

SSSS xNxxPdxgjxa
0

)'(ˆ)'('2)exp()(ˆ θ                (A10) 

∫
++ −=

x

ASASASAS xNxxPdxjxa
0

)'(ˆ)'('2)exp()(ˆ αθ ,       (A11) 

where in the above expressions 1)0()0( == ASS PP . The functions  )(xPS   and )(xPAS  

are calculated explicitly in Appendix B (see equations (B9) and (B10)). Inserting (A10) and 
(A11) in (A9) we obtain: 

πϕβθθ ++Δ=− PASS x 2 ,                                               (A12) 

where we have incorporated the relations, SAS gr 2=α  and Srg=κ  in the last step, with 

ASS

SASSAS

n

n
r

ω
χχω 2/1)/*(

= . In what follows, we choose 2/πθ −=S  and 

)2/3(2 πϕβθ −−⋅Δ−= PAS x  without loss of generality. Our final equations are: 

++ −+Δ+= Ngjaxjrgag
dx

ad
SASPSSS

S ˆ2ˆ))2(exp(ˆ
ˆ

ϕβ                    (A13) 

.ˆ2))2(exp(

ˆ))2(exp(ˆ
ˆ

2

2

+

+
+

+⋅Δ−+

+⋅Δ−−−=

Ngrxjj

axjrgagr
dx

ad

SP

SPSASS
AS

ϕβ

ϕβ
                          (A14) 

Appendix B 
Here we derive the solution to the coupled differential equations (1a) and (1b) for the Stokes 
and anti-Stokes field operators. In Eqs. (1a) and (1b) we make the substitutions: 

)2/exp(ˆˆ,)2/exp(ˆˆ xjbaxjba ASASSS ββ Δ−=Δ= ++ .                             (B1) 

This yields: 

)(ˆ2ˆˆ))2/((ˆ 2/ xNegjbrgbjgb
dx

d xj
SASSSSS

+Δ−+ −+Δ−= βθβ            (B2) 

),(ˆ2*

ˆ*ˆ))2/((ˆ

22/

2

xNgrej

brgbgrjb
dx

d

S
xj

SSASSAS

+⋅Δ−

++

+

−−Δ=

βθ

θβ
                               (B3) 

where )2exp( Pj ϕθ = . 
It is easy to see that the linear combinations:  

+
−−

+
++ +=+= ASSASS bCbUbCbU ˆˆˆ,ˆˆˆ

)()()()( ,                            (B4) 

with  

θ
ββ

S

SSS

rg

grigrigr
C

2

4))1(())1(( 22222

)(

−Δ−+±Δ−+
=± ,           (B5) 

obey the following equations:  

( ) )(ˆ1*2ˆˆ 2/
)()()()( xNeCrgjUU

dx

d xj
S

+⋅Δ−
±±±± −+Λ= βθ ,               (B6) 

where )/())2/(( )()( SS rgigC θβ ±± Λ−Δ−=  or 
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2

4))1(()1( 22222

)(
SSS grirgrg −Δ−+−

=Λ ±

β∓
.               (B7) 

The solution of Eq. (B6) is: 

( )
( ) ( ) ).'(ˆ)'(exp'1*2

)0(ˆexp)(ˆ

2/'
)(0)(

)()()(

xNexxdxCrgj

UxxU

xjx

S
+⋅Δ−

±±

±±±

−Λ−+

Λ=

∫
βθ

    (B8) 

Using Eq. (B4) we find the final expressions for the Stokes and anti-Stokes operators: 

),'(ˆ))'(exp()1*(

))'(exp()1*(
'2

)0(ˆ)exp()exp(

)0(ˆ)exp()exp(
)(ˆ

2/'

)()(

)()()(

0
)()(

)()()(

)()(

)()(
)()(

)()(

)()()()(

xNe
CC

xxCCr

CC

xxCCr
dxgj

b
CC

xx
CC

b
CC

xCxC
xb

xj

x

S

AS

SS

+⋅Δ−

+−

−+−

+−

+−+

+

+−

−+
+−

+−

−++−

⎥
⎥
⎦

⎤

−
−Λ−

−

⎢
⎢
⎣

⎡

−
−Λ−

+

−
Λ−Λ

+

−
Λ−Λ

=

∫

βθ

θ

     (B9) 

).'(ˆ))'(exp()1*(

))'(exp()1*(
'2

)0(ˆ)exp()exp(

)0(ˆ)exp()exp(
)(ˆ

2/'

)()(

)()(

0
)()(

)()(

)()(

)()()()(

)()(

)()(

xNe
CC

xxCr

CC

xxCr
dxgj

b
CC

xCxC

b
CC

xx
xb

xj

x

S

AS

SAS

+⋅Δ−

−+

−−

−+

++

+

−+

−−++

−+

−++

⎥
⎥
⎦

⎤

−
−Λ−

−

⎢
⎢
⎣

⎡

−
−Λ−

+

−
Λ−Λ

+

−
Λ−Λ

=

∫

βθ

θ

       (B10) 

Substituting Eqs. (B9) and (B10) into Eqs. (B1) we find the solution for the field 

operators Sâ  and +
ASâ . The parameters A, B, C and D that appear throughout the main text 

are then given by the respective coefficients of the equations. 

Appendix C 
Here we derive the expression given above for the photon number probability distribution in 
CARS wavelength conversion. To calculate the probability distribution, we must determine its 
characteristic function defined as the Fourier series of the probability distribution: 

jkn

n

jkn eenpkP −
∞

=

− ==∑
0

)()(
~

,                                    (C1) 

which is also the expectation value of jkne−  where n  is the photon number. The probability 
distribution is expressed in terms of the characteristic function as:  

∫
−=

π

π
2

02

1
)( jknjkn

o eedknp o .                                    (C2) 

We present the calculation of the characteristic function for anti-Stokes to Stokes 
conversion; the derivation for Stokes to anti-Stokes conversion proceeds in a similar fashion. 
Also we take the reservoir to be in the ground state. The case where the reservoir is in a 
thermal state is slightly more complicated to compute but similar to the calculation below.  

The characteristic function to be evaluated is:  
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( ) ( )
RASSSSSASRSS axaxajkaxaxajk 00)(ˆ)(ˆexp00)(ˆ)(ˆexp ++ −=− .    (C3) 

We will need the expansion of the exponential with the operators put in normal and in 
anti-normal order: 

( ) ( ) nn

n

n

aa
n

e
aa ˆˆ

!

)1(
ˆˆexp

0

+
∞

=

−
+

∑
−=−

ξ

ξ ,                                 (C4) 

( ) ( )∑
∞

=

++ −=−
0

ˆˆ
!

)1(
ˆˆexp

n

nn
n

aa
n

e
eaa

ξ
ξξ .                             (C5) 

These results can be found for example in [20]. Next, we compute 

( ) ( )n

S
n

S xaxa )(ˆ)(ˆ + .The expectation value is given by: 

( ) ( ) ∑
=

−+
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

n

l

lnl

RASS

n

S
n

SSASR ABa
l

n

l

n
axaxaa

0

)(22

!

!
00)(ˆ)(ˆ00 , 

where we have used the binomial expansion and kept only surviving terms. If we substitute 

the relations 2|| A=η  and ηξ /||' 2Ba=  into the previous expression, we can rewrite it as: 

( ) ( ) ( )n

n

nn

ln

lnn

l

nnl
n

l l

n
lnn

l

n
'

'
1'

'
')1)...(1(

00

ξ
ξ

ηξ
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ηηξ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂+=

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−

==
∑∑ . 

The characteristic function can now be expressed as: 

( ) ( )

( ) .'
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1
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)1(

)(ˆ)(ˆ
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)(ˆ)(ˆexp
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⎝

⎛

∂
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∑

∑

∞

=

+
∞

=

+

  

Next, considering '/1 ξ∂∂+  and 'ξ  as operators we note that 1]','/1[ =∂∂+ ξξ  so 

that they have the same commutation relationship as â  and +â . We define a new 

variable ''ξ  as "1 ξξηη ee −=− , which we use to rewrite the characteristic function: 

( ) ( )

( )( ).'/1'''exp
)1(1

'
'

1
!

)1(1
)(ˆ)(ˆexp
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Next we utilize the normal form of the exponential of )'/1(' ξξ ∂∂+ , which gives: 
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Finally, substituting ''ξ  and setting jk=ξ  we obtain the characteristic function in 
closed form: 
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( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−+−+
=− −+

)1(1

'
exp

)1(1
)(ˆ)(ˆexp '

jkjk

jk

SS
ee

e
exaxajk

η
ξ

η
ξ .           (C6) 

As previously stated, the probability that the photon number )(ˆ)(ˆ xaxa SS
+  has a value 

on  given a coherent state with amplitude a  as the input is given by the Fourier transform of 

the characteristic function. To compute the transform, we rewrite the integral obtained from 

Eqs. (C2) and (C6) by changing to the variable jkez = : 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−−
= ∫

−

oo

n

o zzzz

z

i

dz
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π

ξ /'
exp

)(2
)|( ' ,                       (C7) 

where ηη /)1( −=oz  and the integrand has a pole at ozz = . To evaluate this integral, we 

expand the exponential and carry out the integration in the complex plane of every term in the 
expansion. The result is: 
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πη
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This is the distribution we are seeking. 
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