SCIENTIFIC REPLIRTS

Matrix Analysis of Warped Stretch
Imaging

Chanju Kim®?, Ata Mahjoubfar?3, Jacky C. K. Chan?, Akio Yazaki*, Young-Chul Noh! &

Bahram Jalali%3*
Received: 20 June 2017 . Sensitive and fast optical imaging is needed for scientific instruments, machine vision, and biomedical
Accepted: 21 August 2017 . diagnostics. Many of the fundamental challenges are addressed with time stretch imaging, which
Published online: 11 September 2017 : has been used for ultrafast continuous imaging for a diverse range of applications, such as biomarker-

. free cell classification, the monitoring of laser ablation, and the inspection of flat panel displays. With
frame rates exceeding a million scans per second, the firehose of data generated by the time stretch
camera requires optical data compression. Warped stretch imaging technology utilizes nonuniform
spectrotemporal optical operations to compress the image in a single-shot real-time fashion. Here, we
present a matrix analysis method for the evaluation of these systems and quantify important design
parameters and the spatial resolution. The key principles of the system include (1) time/warped stretch
transformation and (2) the spatial dispersion of ultrashort optical pulse, which are traced with simple
computation of ray-pulse matrix. Furthermore, a mathematical model is constructed for the simulation
of imaging operations while considering the optical and electrical response of the system. The proposed
analysis method was applied to an example time stretch imaging system via simulation and validated
with experimental data.

. Time stretch imaging technology enables fast continuous blur-free acquisition of quantitative phase and intensity

: image, offering high throughput image analysis for various applications such as industrial and biomedical imag-
ing'"!. The imaging technology exploits spatial and temporal dispersion of broadband optical pulses, which real-
izes frame rates equivalent to the pulse repetition rates of mode-locked laser ranging from a few MHz to GHz'2.
The operating principle of the time stretch imager consists of the optical dispersion process in both space and
time, the acquisition and the recording of optical scan signal, and reconstruction of image. First, spatial informa-
tion of imaging target is mapped into spectrum of an ultrashort optical pulse (as a broadband flash illumination),
which is realized with spatial dispersion. The optical spectrum is then mapped into a temporal waveform by tem-
poral dispersion through a process known as time stretch transform? > 1*-1%, The temporal data stream of encoded
spatial information is serially collected and recorded by a single detection system consisting of a photodetector
and a digitizer. Finally, the image is reconstructed by inversely mapping the recorded temporal data stream into
the corresponding spatial coordinates.

A new advancement and variant of the time stretch imaging technology, warped stretch imaging'® 7 (also
known as foveated time stretch imaging) features real-time optical compression of image while keeping the rapid
imaging speed of its predecessor. Warped stretch imaging is realized by intentional warping of the formerly “lin-
ear” frequency-to-time mapping process with highly nonlinear temporal dispersion. The temporal stream of
optical signal becomes a warped representation of the real image. Some portions of the temporal image signal are
dilated in the time domain and other part are contracted. Optical image compression is effectively delivered by
engineering the warp of the group delay dispersion profile, where higher image sampling densities are assigned to
information-rich regions. Inspired by the sharp central vision (foveal vision) found in the human eye, where the
photoreceptors (pixels) are concentrated in the center of gaze'® — warped stretch imaging is successfully demon-
strated by real-time optical image compression in a time stretch infrared imaging system'® and an adaptive codec
for digital image compression'®.

In both conventional time stretch and warped stretch imaging systems, the optical front-end -- consisting of
spatial and temporal dispersion elements -- is the significant and reconfigurable factor in designing the imaging
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operation. The optical dispersion encoding process in the front-end should be rigorously traced in space and time
with respect to frequency (wavelength) for robust image construction and precise performance analysis of the
imaging system. The time stretch process (frequency-to-time mapping) is typically performed within a single dis-
persive element. The process is theoretically well-established and experimentally reliable with the uniform form of
time-stretch dispersive Fourier transform (TS-DFT) and nonuniform form of warped stretch transform? 13-1517:20:21,
In contrast, the one-dimensional spatial dispersion process (frequency-to-space mapping) is a relatively compli-
cated step as it is achieved with combination of free-space optical components (i.e., diffraction grating and focus-
ing lens), which there are a multitude of possible configurations. In addition, the nonlinear spatial dispersion
present in both time stretch and warped stretch imaging systems should be considered as it has non-negligible
warping effect in the mapping process. Due to such complexities in the frequency-to-space mapping process,
it is a non-trivial task to establish a general description of the warped stretch imaging operation. We note that
a theoretical analysis of time stretch imaging system has been formalized previously??. However, the study relies
on an approximation of a system to a linear dispersion model which limits the accuracy of performance analysis
and its use in image reconstruction. The only existing way to precisely analyze a warped stretch imaging system is
by experimental observation of a constructed system!® 1.

To address these limitations, we introduce a numerical method aimed for analyzing arbitrary configurations
of warped stretch imaging systems. The method allows accurate evaluation of frequency-space-time mappings
and the simulation of complete imaging processes. Our analysis method is divided into two parts, consisting of
(i) a modified matrix method and (ii) mathematical models of the components. The modified matrix method
is built upon a ray-pulse matrix formalism developed by Kostenbauder??, which we modified to consider the
nonlinear dispersion of the optical system. This allows for compact and comprehensive means of tracking the
ray-pulse structure (frequency-space-time map) in an arbitrary free-space optical system by matrix computa-
tion. The mathematical model is constructed in order to numerically simulate the imaging process including
the wave nature of the optical signal. We derive the mathematical expressions for each optical and electrical
component in the system and incorporate the frequency-space-time map obtained from the modified matrix
method. Employing our analysis method, we demonstrate numerical evaluation of important parameters such
as field-of-view, number of pixels, reconstruction map, detection sensitivity and spatial resolution. In addition,
we highlight the influence of nonlinear spatial dispersion on the acquired image. This demonstrates that the
construction of warped stretch imaging can be extended to engineering spatial dispersion profiles. As seen in
the studies of other imaging techniques®* %, physically rigorous analysis should assist further development of the
imaging system.

Methods

Principles of time/warped stretch imaging. The key principle of time/warped stretch imaging is con-
ceptually illustrated in Fig. 1a. Optical mapping processes distribute the frequency components of a broadband
ultrashort optical pulse in space and time according to the optical components involved. (1) Frequency-to-time
mapping projects the spectral information to the time domain and (2) frequency-to-space mapping encodes the
spatial information into the spectrum. These two central optical processes can be cascaded regardless of their
order, and enable the ultrafast acquisition of image in single-pixel scanner-like procedure. Figure 1a shows the
arrangement of beam-pulselets for each mapping process in time and space, and the final space-time relationship
of warped stretch imaging. The beam-pulselets can be addressed with their respective space (x), slope (), time (f)
and frequency (f). The optical matrix computation yields the resultant inter-domain (space, time and frequency)
relationship after the propagation. Here, the mapping relationships can be engineered by using optical dispersive
elements of choice. We note that various optical elements were proposed and implemented since the advent of the
time stretch imaging concept. Dispersive fibres, chirped fibre Bragg gratings, chromo-modal dispersion devices*
and free-space angular-chirped-enhanced delay devices?” can be used to define the frequency-to-time relation-
ship, while diffraction gratings, diffractive optical elements, virtually imaged phased arrays, tilted fibre gratings
and optical prisms are a few of available options for establishing the desired frequency-to-space relationship. As
shown in Fig. 1b, the space-time relationship curve of warped stretched imaging system is uniformly point-sam-
pled along the time axis, according to the fixed sampling rate of the ADC. Yellow colored circles on the image
sample represent the spatially sampled points (pixels) corresponding to the discrete time domain of acquisition
electronics. The warped optical mapping and pixel distribution of the acquired scan signal is highly foveated
(Fig. Lc). The features in the center of the gaze are fully resolved, and the less important surrounding areas are
imaged with lower resolution, reducing the required ADC sampling rate. Finally, the warped scan signal is recon-
structed by remapping the temporal data-stream to the original image space according to the space-time rela-
tionship. We note that there are many variants of time/warped stretch imaging systems with different means of
encoding spatial information and acquiring optical signals; however, they all follow the same mapping processes.

Analysis Method. The imaging performance of time/warped stretch imaging systems is determined by
the frequency-space-time mapping process, the electrical bandwidth and the overall sampling rate of the acqui-
sition system, including photodetection and digitization??. In order to deliver a complete and accurate analysis of
an imaging system, we devise an analysis method that replicates the imaging process by means of numerical sim-
ulation. Our analysis method consists of two sub-formalisms: (i) a modified matrix method and (ii) mathematical
modeling. We are able to characterize the frequency-space-time relationship in an arbitrary time/warped stretch
imaging system using the modified matrix method. Subsequently, the mathematical model incorporates the
obtained mapping relationship with mathematical expressions for optical and electrical components. Numerical
simulation of the mathematical model provides the basis of our analysis method.

In the following section, we first introduce the modified matrix method and validate the accuracy of the
method by its application to a well-known laser pulse compressor. Second, we apply the matrix analysis to a
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Figure 1. Principles of time/warped stretch imaging. (a) Time/warped stretch imaging employs frequency-
to-time and frequency-to-space mapping of an ultrashort optical pulse to perform a line scan. Here, to

clarify the method, we use a one-dimensional spatial disperser, which leads to a line scan per pulse. A 4 x 4
ray-pulse matrix computation of vector (space (x), slope (), time (¢) and frequency (f)) specifies the optical
mapping relationship. Colored circles represent uniformly spaced frequency components (beam-pulselets)
and rainbow gradient lines represent their continuous distribution in both space and time domains. (b)
Uniform temporal sampling under this space-to-time relationship determines the spatial sampling position
on the image space. Yellow dots on the fingerprint sample image account for the warped pixel distribution of
a given imaging system. (c) The corresponding temporal scan signal from the sampled points is acquired by a
single-pixel photodetector and an analog-to-digital converter (ADC). The three pronounced peaks in the scan
signal correspond to the fingerprint ridges in the center of the line scan. The scan signal is reconstructed by
remapping the temporal data-stream back to the original image space. Regions with higher temporal dispersion
are effectively assigned more samples (central region), while the part of the waveform that is not highly time-
stretched corresponds to fewer imaging pixels (peripheral regions).

time stretch imaging system where we obtain frequency-space-time mapping and important parameters such as
field-of-view, number of pixels and image warp of the imager. Finally, we derive the mathematical model of time
stretch imaging operation.

Modified Matrix Method. The modified matrix method is based on a 4 x 4 optical matrix formalism devel-
oped by Kostenbauder which is widely used for characterizing spatiotemporally dispersive optical systems** 25,
The Kostenbauder matrix method uses vector with four elements [x 6 ¢ f]” to define deviation of space, angle, time
and frequency from the reference optical pulse. Here, the space and angle is designated to a transverse direction,
and the time is determined in the propagating direction of the pulse. As shown in eq. (1), computing the product
of an input vector v, = [x;, 0, ti, fi,] and a 4 x 4 optical matrix yields an output vector Vg, = [Xout Oout Lout four) -
which reflects the structure of the pulse after propagation.

Xout A B OE Xin
auut _ C DO F ) Hin
Lout G H1 I Lin
o) N0 00T, ¢))
The 4 x 4 optical matrix in eq. (1) is able to model time invariant optical element or system with the
convention:
axaul‘ 8'xout 0 a‘xout
Ox;,, 06, of,
é g g £ 890ut 8eaut 0 6eout
= | 0x;,, 00, of,
G H 1 I m m in
0 0 01 atout atout.‘ 8tout
ox;,, 06, of,
0 0 0 1 2)

where the constants A, B, C and D are identical to the elements of the ABCD ray matrix, E, F, G, H, and I repre-
sent the spatial dispersion, angular dispersion, pulse-front tilt, time-angle coupling, and group delay dispersion
respectively. The optical matrices for conventional optical components such as free-space, lens, mirror, dispersive
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T(Af): Group delay of dispersive fiber

Table 1. Optical Matrices for diffraction grating and dispersive fiber.

slab, prism and diffraction gratings are derived with simple geometric calculations®. We find that as the elements
are constant values corresponding to first-order derivatives in the neighborhood of the given reference point,
the optical matrix is accurate in dispersion up to the second order (linear dispersion). However, when imaging
with broadband ultrashort pulses, higher-order dispersion should be considered in order to fully characterize
an actual optical system. Therefore, we have constructed a generalized non-constant matrix as a modified form
of the original Kostenbauder matrix. We distinguish our notation from the linear analysis where the modified
vector is expressed as [Ax Af At Af]". With the following optical matrix, high-order spatial, angular and tem-
poral dispersion (E, E I) can be considered. We substitute the elements in the 4 x 4 optical matrix with frequency
dependent functions as

A B O %l Byy)
Af;t’l
Do Ab,(Af,)
M= Af,,
G H 1 Aloul By,
Af;n
000 1 (3)

The elements A, B, C, D, G and H are kept unchanged from the original form of Kostenbauder matrix
(first-order derivative). In order to include high-order dispersion, E, F and I are now replaced as arbitrary func-
tion of Af;,. The modified elements E, F and I, can be defined by inserting corresponding frequency-dependent
function of an optical component. We provide matrices for the dispersive optical components in Table 1.

An arbitrary optical system can be analyzed with the optical matrix calculation in a numerical fashion. The
frequency components of the pulse are segmented over the whole spectrum as series of vectors where they are
computed with the optical matrices. As a demonstration of our method, we analyzed a laser pulse compressor, a
well-known and simple optical system consisting of diffraction grating pairs. Optical matrices for the laser pulse
compressor are expressed as

Axout Axin
Aezmt A01'n
At = Mgmting ' Mfreespuce ! Mgrating : Mgruting : Mfreespuce : Mgmting ' At
out in
Aot A, (4)
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Figure 2. Demonstration of modified matrix analysis for laser pulse compressor. Red, blue and green line
represent optical paths for each frequency component. (a) Schematic of laser pulse compressor. The center
wavelength of the pulse is 810 nm, and the incident angle of the pulse at the first diffraction grating is 63 degrees
(Littrow angle), and the separation distance between the diffraction grating pair is 1 cm. (b) Group delay, (c)
group-delay dispersion, and (d) third-order dispersion of the laser pulse compressor evaluated by analytical
formula (blue solid line), modified matrix (red circle) and original Kostenbauder matrix (grey dashed line).

where Ax,,, is the computed output vector with information of position, A6, is slope, At,,,, is time and Af,
frequency. Thus, the output vector completely defines the frequency-space-time relationship of the pulse after
propagation through the system. Here, we have omitted the optical matrix for the free-space between the diffrac-
tion grating pairs, as it does not affect the temporal dispersion of a perfectly aligned pulse compressor.

To illustrate the method, the frequency components of the input pulse are segmented into three vectors as
shown in Fig. 2a. The red, green and blue colors represent lowest frequency, reference (center) frequency and
highest frequency respectively. We obtain three output vectors by computing the optical matrices with the three
input vectors. As we analyze the output vectors of an ideal laser compressor, the deviation in space and slope in
the output vectors are zero while the temporal deviation (group delay) are At, 0, At, for each frequency compo-
nents (red, green and blue respectively). Using this convention, we acquire group delay profiles with sufficient
number of frequency samples over the 20 nm optical bandwidth. We calculated the temporal dispersion and
compared with the analytical result?’ to validate our analysis method. The temporal dispersion of the system,
group delay (GD), group delay dispersion (GDD) and third-order dispersion (TOD) can be evaluated by

dl, b
T(w) = Aty — =l 271; tan(6,) 5)
GDD(w) = L7 ()
Cdw f (6)

2

d
TOD(w) = ng(W) @

where 7, is the group delay, equivalent to the value At , at the given frequency component and 6, is the
frequency-dependent first-order diffraction angle.

Figure 2b-d show the comparison of GD, GDD and TOD results obtained from our modified matrix method,
the original Kostenbauder matrix and analytical expression?”3°. Our analysis method shows good agree-
ment with the result of the analytical solution, which exhibits high-order dispersion. In contrast, when using
the Kostenbauder matrix, the accuracy of the results is limited to second-order dispersion where the analyzed GD
is linearly related to the frequency. Due to the limitation, the Kostenbauder matrix method results in a constant
GDD and a zero high-order dispersion (TOD). We note that evaluation of higher-order dispersion using our
method is limited only by the floating point accuracy of numerical differentiation.
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Figure 3. Matrix analysis of time stretch imaging system. (a) Schematic of time stretch imaging system (laser
scanner-type). Ultrashort optical pulses with a center wavelength of 810 nm and an optical bandwidth of 20nm
is generated by a Ti:Sapphire mode-locked laser. The group delay dispersion of the dispersive fiber is —650 ps/
nm and the groove density of the diffraction grating pair is 2200 lines/mm. The light blue and light green
bounded graphs represent the spectro-spatio-temporal maps of the optical pulse after the dispersive fiber and
after the diffraction grating, respectively. The temporal position is t = —z/c (z: propagation direction and c:
velocity of light) (b) Frequency-to-time mapping function ¢ (w) after the dispersive fiber. (c) Frequency-to-
space relationship x,(w) and (d) time-to-space mapping function x,(¢) after the diffraction grating. Different
types of spatial dispersion configuration are shown in (e) and (f). Either transmission or reflection type
diffraction gratings can be used in any of these configurations.

Matrix Analysis of Time/Warped Stretch Imaging System. We employ the matrix analysis method
for alaser scanning type time stretch imaging system!!' shown in Fig. 3a. The operation of imaging entails optical
dispersion in time and space domain. A broadband optical pulse is temporally dispersed with dispersive fiber in
the TS-DFT process. It is then spatially dispersed by a pair of diffraction grating into a one-dimensional rainbow.
After being respectively mapped in the temporal and spatial domain, the pulse is incident on imaging target and
performs the scan. The schematic of the imager in Fig. 3a is expressed mathematically as

Axout Axin
AB,, A6,
Atlm = Myt - Atf” (Mtotal = Mgmting : Mfreespace ' Mgrating : Mﬁher)'

out in

Af e Af,, (8)

Figure 3b shows the frequency-to-time mapping established by the propagation of the pulse through a dis-
persive fiber. Figure 3¢ and d show the frequency-to-space and time-to-space mappings after passing through the
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diffraction grating pair. The numerical results obtained by our matrix analysis agree well with the measured data
from our previous study'!. We note that different types of spatial dispersion configurations are possible as shown
in Fig. 3e and f. The total optical matrix for each cases can be simply derived by multiplication of the correspond-
ing optical matrices (i.e., focusing lens and free-space).

Several important parameters can be directly obtained from the overall frequency-space-time mapping
resulting from the matrix evaluation; these include the overlap condition between consecutive scanning pulses,
field-of-view (FOV), total number of pixels, detection sensitivity, and the explicit representation of the recon-
struction map®?%. When the scan rate of time stretch imaging system is represented by R, the temporal window
for the time stretched pulse is limited by the pulse repetition period of R™'. In order to avoid overlap between
consecutive pulses the following condition needs to be satisfied.

AT < R7! 9)

AT = [,(@i) — L(wyig0)| (10)

where A7 is the time stretched pulse width, ¢, is the frequency-time relationship obtained from the matrix anal-
ysis as shown in Fig. 3b, w;,,, and w,, , are the cutoff optical frequencies at lowest and highest end of the spectrum
respectively. The FOV of the system is determined by the spectral width of the pulse and frequency-to-space
mapping of the spatial dispersion component. The FOV is given by

AxFOV = ‘xw(wlaw) - xw(whigh)‘ (11)

where x, is the frequency-space relationship as shown in Fig. 3c. The number of pixel N is equivalent to the num-
ber of temporally sampled points in the digitizer, which is expressed as

N = f AT (12)

where f;;, is the sampling rate of the digitizer. The detection sensitivity of the imager is largely determined by the
fundamental noise mechanisms (shot noise, dark current noise and thermal noise) of the photodetector?? and
the frequency-to-time mapping profile. Assuming far field conditions for frequency-to-time mapping'*?!, the
number of collected photoelectrons at the pixel corresponding to the frequency w is

dt (w) ]“

Bw) =n-Sw) - [7

/f;fig (13)

where 7 is the quantum efficiency of the photodetector, and S(w) is the spectral density of incident photon flux.
Without loss of generality, considering both dispersive Fourier transformation with Raman amplification and
without, the total noise of the imaging system becomes®> !,

Gorat@) = (GW) - Q- @) + o + o7 (14)

where G(w) is the optical amplification spectrum, Q is the amplification noise figure, g;(w) is the shot noise which
can be approximated by g(w) = Bn(w)l/ 2 gy is the dark current noise and o7 is the thermal noise. With the signal
and noise defined, we may express signal-to-noise ratio (SNR) as:

SNR_(w) = GW) - B(w) _ P, (w)

Ororal() \/ Q- B + (G((,_: | )2 n (GZ) )2 (15)

The spectral description of SNR (denoted by SNR (w)) can be conveniently changed to its corresponding spa-
tial description by SNR,(x) = SNR,(w,(x)). Finally, the reconstruction of image can be simply achieved by map-
ping the temporal position of the recorded signal to the spatial coordinate using the time-to-space mapping x,(t).

In the next section, we build a mathematical model of the time stretch imaging operation. In order to quantify
the signal broadening (spatial resolution) of the imaging system, the optical and electrical response of the system
needs to be mathematically considered. The optical mapping result from the matrix analysis (temporal dispersion
profile ¢ and spatial dispersion profile x,_) is integrated to the mathematical model for simulating the optical wave
propagation in the dispersive elements. At the final stage of the model, the time-to-space mapping x, is used for
reconstructing the image from the electrical scan signal.

Mathematical Model. The imaging performance of the system is determined by the spectro-spatio-temporal
map of the optical pulse in conjunction with the responses of diffraction grating pair, dispersive fiber, photode-
tector, and digitizer. In order to rigorously investigate the imaging process, we have established a mathematical
model for the time stretch imaging system (laser scanner type)'!.

We assume the initial optical pulse to be a transform-limited Gaussian pulse with its electrical field in the fre-
quency domain expressed as
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1/2 —szoz
E\(w) = Ey(27T,) “exp — (16)

where E, is the pulse amplitude and T}, is the pulse half-width. The pulse after propagation through the dispersive
fiber with frequency response Hppe,(w) is expressed as

E)(w) = Hﬁber(w) - Ey(w) (17)

ing(w)dw] = exp[iftw(w)dw] (18)

where 7,(w) is the group delay of the dispersive element. Due to TS-DFT, the group delay is identical to the
frequency-time relationship ¢,_(w) obtained from the matrix analysis. We note that the group-delay dispersion of
the dispersive fiber is required to meet the far-field condition'>?! to successfully map the spectrum into time
domain. The diffraction grating pair spectrally encodes the spatial information of the sample S, where the process
can be viewed as amplitude spectral mask with spectrally varying broadening profile g(w, ') for each frequency
component w'. The frequency response of the diffraction grating pair and imaging target can be calculated as

Hﬂher(w) = &xp

Hgmtingfsample(w) = fsw(w/) : g(W, w’)dw’ (19)

where S (w) = S,(x,(w)), which is the spectral representation of S, obtained by a change of domain using the
frequency-to-space mapping function x_(w). We have assumed that each spectral component to be a Gaussian
beamlet when incident on the sample. The finite beam width of the Gaussian spectral component ' results in
a Gaussian spectral broadening profile g(w, w’), which can be expressed as

— ’
2In2|¥ Y
w,(w')

g(w, w') = exp

(20)

where spectral width w (w) = w, - [dx_ (w)/ dw]'is a product of the full width half maximum (FWHM) incident
beam width of the spectral component w, on the sample and the inverse derivative of frequency-space relation-
ship x_(w). In the case of the 2-f configuration shown in Fig. 3e (grating - focusing lens - sample), the beam width
on the sample plane becomes w, = -/21n(2) FA cos 6,/(mW cos 6;) where W is the input beam waist, F is the focal
length of the lens after the diffraction grating, ), is the optical wavelength, 6, and 6, are the incident and diffrac-
tion angle respectively. Here, the beam width w, can be numerically determined by performing Finite Difference
Time Domain simulations when using unconventional spatial dispersion devices. Using the derived frequency
response, the electric field after the diffraction grating pair and the sample becomes

ES(UJ) = Hgmting—sample(w) : EZ(UJ) (21)

The transmitted or reflected stream of light from the sample is then converted into the electrical signal by the
photodetector and recorded by the digitizer. The photocurrent I(¢) and the frequency domain representation of
the photocurrent I(w) after photodetection and digitization becomes

I,(t) = KE{(t)E3(t) (22)

L(w) = H(w) - I(w) (23)

where w now represents electrical signal (RF) frequency, K is the responsivity of the photodetector and H,(w) is
the frequency response of the electrical back-end consisting of photodetector and digitizer. We may either use
an equivalent RC circuit model*?' or the frequency response acquired from the actual photodetector for H,(w).
Finally, the signal is digitally sampled and recorded by the digitizer as

I [n] o I(t) - 8(t — nT) (24)

where T is the sampling period of the digitizer and n is the pixel index of the recorded scan signal. Each pixel of
the recorded image signal I, [n] is located at its corresponding discrete spatial coordinate X[n], which can be
expressed as

X[n] = x,(t) - 6(t — nT) (25)
Finally, the imaging result I, [X] is reconstructed by mapping the signal I igln]to the spatial domain X[n].

Results and Discussion

In this section, we consider the time stretch imaging system used in ref. 11 to demonstrate our analysis method.
First, we perform numerical simulations and compare the results with the experimental data to validate our
method. We then analyze the spatial resolution in terms of line-spread function (LSF) and modulation transfer
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Figure 4. Reconstruction and numerical simulation of time stretch imaging system from ref. 11. (a) A 0.5 mm
wide slit is placed immediately before the target sample and translated transversely along the scanning beam

at intervals of 0.5 mm. The total number of scans is 49. The FOV of the system is limited to 24.5 mm, since

the time stretched pulse width is limited by 11 ns to avoid overlapping of the consecutive pulses. (b) Recorded
scan data from the digitizer'". (c) Reconstructed image from simulation. (d) Reconstructed image from the
experimental scan data. The inset shows a comparison of the reconstructed image from the simulation (solid
red) and from experimental data (solid blue). The 24th scan number is indicated by the dashed grey line.

Element Spatial resolution

Diffraction grating W,

dxyW| ar
dw ) ‘dt_‘,(w')

dw

Dispersive fiber

dxyW) | TEWHM
dw dt ()
dw

Electrical bandwidth

dx )| 1
dw

Sampling rate

Table 2. Spatial resolution limit.

function (MTF), which are widely used metrics for evaluating imaging systems. By taking note of the scan signal
warp in the imaging system'!, we also discuss the effects of high-order spatial dispersion on the resultant image.

Simulation of Time/Warped Stretch Imaging. Discrete-time complex envelope analysis®! was used for
the numerical simulation of the mathematical model. We have compared and analyzed the imaging result of
simulation and experiment from ref. 11 and the results are plotted in Fig. 4. As shown in Fig. 4a, total of 49 scans
were performed while 0.5 mm wide slit was translated by interval of 0.5 mm for each scan. The transmitted light
through the slit is captured and recorded by the photodetector and digitizer. The recorded scan from the previous
experiment!! is shown in Fig. 4b which displays a nonlinear relationship between time (pixel number) and space.

SCIENTIFICREPORTS|7: 11150 | DOI:10.1038/s41598-017-11238-5 9



www.nature.com/scientificreports/

a b c
4 T 500 1
—Grating .
— Fiber £
3l —eB -] 8400 08
—_ Rd g S
£ —SR Pt 3
S R L
= |L="=Total - > 300 . 06}
-t
% 2=t / g =
[ g 200 041
Q =
“ql ] =
‘g 100 0.2}
(%)
————————— 0 0 0 .
0 10 20 0 10 20 0 100 200 300 400
Space [mm] Space [mm] Spatial frequency [cycles/m]

Figure 5. LTF and MTF spatial resolution analysis of time stretch imaging system in ref. 11. The temporal
response of the detection system was assumed to have a rise-time of 750 ps, and a sampling rate of 20 GS. (a)
The spatial resolution of a single line scan. Grating: diffraction grating pair; Fiber: dispersive fiber; EB: electrical
bandwidth; SR: sampling rate; Total: overall spatial resolution as defined by the FWHM of the LSE. (b) Three-
dimensional color plot of MTE The black-dashed line represents the MTF cut-off frequency at half-maximum.
(c) MTF as evaluated for x =2, 13, 24 mm each corresponding to the white-dashed lines in (b).

We reconstruct the image by mapping the signal to corresponding spatial coordinate (eq. 25) where the result
is shown in Fig. 4d. We can see that the reconstructed image from the simulation Fig. 4c matches well with the
image from the experiment. In addition, we have observed the broadening feature of the image across the FOV as
shown in Fig. 4c and d which implies nonuniform spatial resolution of the image.

Spatial Resolution. The spatial resolution of the imager is defined by a combination of factors, including the
diffraction grating, dispersive fiber, photodetector and digitizer. We summarized the spatial resolution limits for
each contributing factors in Table 2. The spatial resolution limit of the diffraction grating can be directly expressed
with the beam width w, of a spatially dispersed frequency component at the imaging target, whereas the spectral
ambiguity of the time stretch process (TS-DFT)" for the dispersive fiber is translated into a spatial resolution by
the frequency-to-space conversion factor |dx,(w)/dw|. We note that the far-field condition'**' should be satisfied
for the spatial resolution expression to be valid for time stretch processes. The temporal resolution which arises
from the finite electrical bandwidth of the detection system also limits the spatial resolution. We define the tem-
poral resolution 7,7, as the FWHM of detection system’s temporal impulse function and convert it into spatial
resolution by using frequency-to-time |dt (w)/dw| and frequency-to-space |dx, (w)/dw| conversion factors,
respectively. In a similar manner, the resolution limit arises from the temporal sampling rate of the digitizer _);igz.
Here, the spatial resolution limits for each factor are derived as a function of optical frequency.

The overall spatial resolution can be obtained by evaluating the net response of the system. In the spatial
domain, LSF represents the net broadening caused by the imaging system?®>**. To obtain the LSF, we perform
imaging simulation of Dirac delta function as the imaging sample. As previously shown, since the spatial resolu-
tion is not uniform over the scanning beam, the LSF should also be considered as a shift-variant and locally
defined function. Therefore, we take series of LSF(x, x’) corresponding to imaging simulation result of Dirac delta
function 6(x — x’) where x’ is the spatial coordinate of interest within the FOV.

In this study, we define the overall spatial resolution as the FWHM of the LSE. As shown in Fig. 5a as a
purple-dotted line, the total spatial resolution clearly exhibits a nonuniform profile along the line scan. When assess-
ing the contributions from each individual optical elements, we find that the spatial resolution is primarily limited by
the diffraction grating and the photodetector. While the resolution profile of the diffraction grating pair is constant
and equal to the incident beam width (1.5 mm). The nonlinear frequency-to-space mapping introduced by the dif-
fraction grating pair causes the resolution profile of the other optical elements to vary across the FOV.

Another widely used metric for spatial resolution of an imaging system is the MTF, which represents the
resolving power in terms of spatial frequency®>*. Like the LSE, the MTF is also shift-variant and should be also
determined independently at each spatial position x’. The locally - defined MTF is evaluated by taking the Fourier
transform of the LSF at the corresponding location. It can be expressed as

MTE(f,, x') = k|F[LSF(x, )]| 26)

where f_is the spatial frequency, k is the normalization constant and F is the Fourier transform operator.
Figure 5b shows the three-dimensional color plot of the MTF defined at each spatial position x". As we move away
from the spatial position x =0, the FWHM of the LSF (purple-dotted line in Fig. 5a) increases while the MTF
bandwidth (black-dashed line in Fig. 5b) decreases. This means that a smaller line broadening (LSF) allows for
the detection of features at a higher spatial frequency (i.e., MTF bandwidth). The correlation is also evident from
the Fourier transform relationship between the MTF and the LSF in eq. (26). Figure 5c shows the calculated MTFs
for three different locations as denoted by white dashed lines in Fig. 5b. When imaging a sinusoidal pattern sam-
ple with a single spatial frequency, the contrast of the imaged pattern will be different across the FOV. The
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Figure 6. The effects of incidence angle on the space-to-time mapping and spatial resolution. (a) The space-to-
time mapping at three different incident angles 55.2° (“1”; solid red), 56.7° (“2”, solid blue), 63° (“3”, solid green).
(b) The reconstructed images from numerical simulation at the three incidence angles. The 5-mm period picket
fence pattern used as the sample is shown in the background for reference. (c,d, and e) Spatial resolution profiles
at the three incidence angles. The FOV is 45.1 mm, 28.2 mm, and 10.9 mm at each respective angle, respectively.

sinusoidal image obtained at spatial positions x=2, 13, 24 mm will have different contrast proportional to their
MTF (Fig. 5¢) shown as red, green and blue solid lines, respectively.

Influence of Spatial Dispersion Element. Time/warped stretch imaging systems generally have fixed tem-
poral dispersion elements, each of which is governed by their respective dispersion profiles and the propaga-
tion length within each dispersive element. However, the spatial dispersion of diffraction grating pairs can be
adjustable simply by repositioning the gratings. For example the FOV is proportional to the distance between the
grating pair. In particular, changing the incident angle of the optical input into the diffraction grating affects the FOV
and spatial resolution profile (warp profile) simultaneously. To illustrate this effect in a quantitative fashion, we
numerically analyze the FOV and spatial resolution of the imaging system for three different incident angles (55.2°,
56.7° and 63°) at the diffraction grating pair used in ref. 11. The angular tuning of the diffraction grating results in
varying frequency-space relationship x, and time-space relationship x, as shown in Fig. 6a. It shows that a mere
difference of 8 degrees in the incident angle yields a more than four-fold difference in the FOV. Similarly, the degree
of nonlinearity in the time-to-space mapping function is also affected by changes in the incident angle, being the
most significant for the incident angle of 55.2° and the least significant for the Littrow configuration (63°). This fea-
ture is evident from the grating equation where spatial (angular) dispersion becomes more nonlinear as we move
away from the Littrow angle. Figure 6b shows a comparison of the reconstructed images at the three specified angles.
We used a picket fence pattern with a period of 5 mm as the imaging sample. Visual inspection of the edge sharp-
ness indicates that the nonlinearity in the space-time relationship promotes an increasing spatial resolution along the
scan line. A detailed analysis of the spatial resolution is shown in Fig. 6¢c—e for each incidence angle, respectively. As
mentioned in the spatial resolution analysis, the spatial resolution imposed by the diffraction grating pair is fixed by
the incident beam width, which is identical for all cases. However, the nonlinear spatial dispersion enhances the
varying amount of |dx, (w)/dw| over the spectrum which boosts the nonuniformity in spatial resolution limits of
other elements (cf. Table 2). In addition, the spatial resolution becomes coarser with wider FOV which results from
high average value of |dx_(w)/dw]|. The analysis results display that the reconfiguration of spatial dispersion compo-
nent can significantly influence the FOV and spatial resolution profile of the acquired image. The above analysis
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shows that the physical adjustments to the spatially dispersive elements, such as in the case of angular tuning of the
incident angle of the optical beam upon the grating pair, may provide an additional pathway for designing the spec-
trotemporal mapping profile of warped stretch transform imaging systems.

Conclusions

Here, we have presented a general analysis method for characterizing arbitrary spatial, spectral and temporal dis-
persion profiles, the crucial components used in warped stretch imaging systems. We have established the modi-
fied matrix method to accommodate arbitrary frequency-space-time map pings of dispersive optical systems and
constructed a mathematical model to numerically simulate the imaging operation. Employing our numerical
analysis, we have quantified the spatial resolution in terms of its LSF and MTE, and the design parameters such as
the FOV, total number of pixels, detection sensitivity and reconstruction map. Finally, we investigated the effect
of tuning the nonlinear spatial dispersion on the imaging operation. Our method serves as a comprehensive tool
for characterizing arbitrary reconstruction mappings and for empirically optimizing the performance of actual
warped stretch imaging systems, and enables the ability to fully design a warped stretch imaging system prior to
its construction. We anticipate that the increased accessibility to warped stretch systems that this method pro-
vides would encourage its adoption for precision imaging and ultrafast optical inspection applications.

Data availabilty. The datasets generated and analyzed during the current study are available from the corre-
sponding author on reasonable request.
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